Effect of cyclic bis(3′–5′)diguanylic acid and its analogs on bacterial biofilm formation
نویسندگان
چکیده
Cyclic bis(3'-5')diguanylic acid (cyclic-di-GMP) functions as a second messenger in diverse species of bacteria to trigger wide-ranging physiological changes. We measured cyclic-di-GMP and its structural analogs such as cyclic bis(3'-5')guanylic/adenylic acid (cyclic-GpAp), cyclic bis(3'-5')guanylic/inosinic acid (cyclic-GpIp) and monophosphorothioic acid of cyclic-di-GMP (cyclic-GpGps) for effects on the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. We constructed a knockout mutant of SA0701, which is a GGDEF motif protein relevant to diguanylate cyclase from S. aureus 2507. We confirmed that the biofilm formation of this mutant (MS2507 Delta SA0701) was reduced. Cyclic-di-GMP corresponding to physiological intracellular levels given in the culture recovered the biofilm formation of MS2507 Delta SA0701, whereas its analogs did not, indicating that unlike a previous suggestion, cyclic-di-GMP was involved in the positive regulation of the biofilm formation of S. aureus and its action was structurally specific. At a high concentration (200 microM), cyclic-di-GMP and its analogs showed suppression effects on the biofilm formation of S. aureus and P. aeruginosa, and according to the quantification study using costat analysis, the suppression potential was in the order of cyclic-di-GMP, cyclic-GpGps, cyclic-GpAp and cyclic-GpIp, suggesting that the suppression effect was not strictly specific and the change of base structure quantitatively affected the suppression activity.
منابع مشابه
3',5'-cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection.
The cyclic dinucleotide 3',5'-cyclic diguanylic acid (c-di-GMP) is a naturally occurring small molecule that regulates important signaling systems in bacteria. We have recently shown that c-di-GMP inhibits Staphylococcus aureus biofilm formation in vitro and its adherence to HeLa cells. We now report that c-di-GMP treatment has an antimicrobial and antipathogenic activity in vivo and reduces, i...
متن کاملCyclic di-GMP signalling and the regulation of bacterial virulence
Signal transduction pathways involving the second messenger cyclic di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate] occur widely in bacteria where they act to link perception of environmental or intracellular cues and signals to specific alterations in cellular function. Such alterations can contribute to bacterial lifestyle transitions including biofilm formation and virulence. The cellu...
متن کاملNovel tricks played by the second messenger c-di-GMP in bacterial biofilm formation.
The ubiquitous bacterial second messenger bis-(30-50)-cyclic dimeric GMP (c-di-GMP) promotes biofilm formation by an astonishing variety of molecular mechanisms. Steiner et al (2013) now report that c-di-GMP directly stimulates interaction and enzymatic activity of two subunits of the membrane-integrated machinery that produces and secretes the poly-b-1,6-N-acetylglucosamine (PGA) exopolysaccha...
متن کاملInterplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation.
Vibrio cholerae is a facultative human pathogen. The ability of V. cholerae to form biofilms is crucial for its survival in aquatic habitats between epidemics and is advantageous for host-to-host transmission during epidemics. Formation of mature biofilms requires the production of extracellular matrix components, including Vibrio polysaccharide (VPS) and matrix proteins. Biofilm formation is p...
متن کاملFormation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator.
Diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively synthesise and hydrolyse the secondary messenger cyclic dimeric GMP (c-di-GMP), and both activities are often found in a single protein. Intracellular c-di-GMP levels in turn regulate bacterial motility, virulence and biofilm formation. We report the first structure of a tandem DGC-PDE fragment, in which the catalytic domains...
متن کامل